Intrinsic sensors of Fiber optic sensor

Optical fibers can be used as sensors to measure strain, temperature, pressure and other quantities by modifying a fiber so that the quantity to be measured modulates the intensity, phase, polarization, wavelength or transit time of light in the fiber. Sensors that vary the intensity of light are the simplest, since only a simple source and detector are required. A particularly useful feature of intrinsic fiber optic sensors is that they can, if required, provide distributed sensing over distances of up to one meter.
Temperature can be measured by using a fiber that has evanescent loss that varies with temperature. Electrical voltage can be sensed by nonlinear optical effects in specially-doped fiber, which alter the polarization of light as a function of voltage or electric field. Angle measurement sensors can be based on the Sagnac effect.
Optical fibers are used as hydrophones for seismic and sonar applications. Hydrophone systems with more than one hundred sensors per fiber cable have been developed. Hydrophone sensor systems are used by the oil industry as well as a few countries' navies. Both bottom-mounted hydrophone arrays and towed streamer systems are in use. The German company Sennheiser developed a laser microphone for use with optical fibers.[1]
Optical fiber sensors for temperature and pressure have been developed for downhole measurement in oil wells.[2] The fiber optic sensor is well suited for this environment as it functions at temperatures too high for semiconductor sensors (distributed temperature sensing).
Optical fibers can be made into interferometric sensors such as fiber optic gyroscopes, which are used in the Boeing 767 and in some car models (for navigation purposes). They are also used to make hydrogen sensors.
Fiber-optic sensors have been developed to measure co-located temperature and strain simultaneously with very high accuracy using fiber Bragg gratings.[3] This is particularly useful when acquiring information from small complex structures. Brillouin scattering effects can be used to detect strain and temperature over larger distances (20–30 kilometers).[4]

[edit] Other examples
A fiber-optic AC/DC voltage sensor in the middle and high voltage range (100–2000 V) can be created by inducing measurable amounts of Kerr nonlinearity in single mode optical fiber by exposing a calculated length of fiber to the external electric field.[5] The measurement technique is based on polarimetric detection and high accuracy is achieved in a hostile industrial environment.
High frequency (5 MHz–1 GHz) electromagnetic fields can be detected by induced nonlinear effects in fiber with a suitable structure. The fiber used is designed such that the Faraday and Kerr effects) cause considerable phase change in the presence of the external field.[6] With appropriate sensor design, this type of fiber can be used to measure different electrical and magnetic quantities and different internal parameters of fiber material.
Electrical power can be measured in a fiber by using a structured bulk fiber ampere sensor coupled with proper signal processing in a polarimetric detection scheme. Experiments have been carried out in support of the technique.[7]
Fiber-optic sensors are used in electrical switchgear to transmit light from an electrical arc flash to a digital protective relay to enable fast tripping of a breaker to reduce the energy in the arc blast. [8]

0 comments:

Post a Comment