Single-mode optical fiber


n fiber-optic communication, a single-mode optical fiber (SMF) (monomode optical fiber, single-mode optical waveguide, or unimode fiber) is an optical fiber designed to carry only a single ray of light (mode). This ray of light often contains a variety of different wavelengths. Although the ray travels parallel to the length of the fiber, it is often called the transverse mode since its electromagnetic vibrations occur perpendicular (transverse) to the length of the fiber.
read more “Single-mode optical fiber”

Types of Multi-mode optical fiber

Multi-mode fibers are described by their core and cladding diameters. Thus, 62.5/125 µm multimode fiber has a core size of 62.5 micrometres (µm) and a cladding diameter of 125 µm. In addition, multi-mode fibers are described using a system of classification determined by the ISO 11801 standard — OM1, OM2, and OM3 — which is based on the bandwidth of the multi-mode fiber.
For many years 62.5/125 µm (OM1) and conventional 50/125 µm multi-mode fiber (OM2) were widely deployed in premises applications. These fibers easily support applications ranging from Ethernet (10 Mbit/s) to Gigabit Ethernet (1 Gbit/s) and, because of their relatively large core size, were ideal for use with LED transmitters. Newer deployments often use laser-optimized 50/125 µm multi-mode fiber (OM3). Fibers that meet this designation provide sufficient bandwidth to support 10 Gigabit Ethernet up to 300 meters. Optical fiber manufacturers have greatly refined their manufacturing process since that standard was issued and cables can be made that support 10 GbE up to 550 meters. Laser optimized multi-mode fiber (LOMMF) is designed for use with 850 nm VCSELs.
The migration to LOMMF/OM3 has occurred as users upgrade to higher speed networks. LEDs have a maximum modulation rate of 622 Mbit/s because they can not be turned on/off fast enough to support higher bandwidth applications. VCSELs are capable of modulation over 10 Gbit/s and are used in many high speed networks.
VCSEL power profiles, along with variations in fiber uniformity, can cause modal dispersion which is measured by differential modal delay (DMD). Modal dispersion is an effect that caused by the different speeds of the individual modes in a light pulse. The net effect causes the light pulse to separate or spread over distance, making it difficult for receivers to identify the individual 1's and 0's. The greater the length, the greater the modal dispersion. To combat modal dispersion, LOMMF is manufactured in a way that eliminates variations in the fiber which could affect the speed that a light pulse can travel. The refractive index profile is enhanced for VCSEL transmission and to prevent the pulse spreading. As a result the fibers maintain signal integrity over longer distances, thereby maximizing the bandwidth
read more “Types of Multi-mode optical fiber”

Applications of Multi-mode optical fiber

Multimode fiber has higher "light-gathering" capacity than single-mode optical fiber. In practical terms, the larger core size simplifies connections and also allows the use of lower-cost electronics such as light-emitting diodes (LEDs) and vertical-cavity surface-emitting lasers (VCSELs) which operate at the 850 nm wavelength (single-mode fibers used in telecommunications operate at 1310 or 1550 nm and require more expensive laser sources. Single mode fibers exist for nearly all visible wavelengths of light).[1] However, compared to single-mode fibers, the limit on speed times distance is lower. Because multi-mode fiber has a larger core-size than single-mode fiber, it supports more than one propagation mode, hence it is limited by modal dispersion, while single mode is not. Also, because of their larger core size, multi-mode fibers have higher numerical apertures which means they are better at collecting light than single-mode fibers. Due to the modal dispersion in the fiber, multi-mode fiber has higher pulse spreading rates than single mode fiber, limiting multi-mode fiber’s information transmission capacity.
Single-mode fibers are most often used in high-precision scientific research because the allowance of only one propagation mode of the light makes the light easier to focus properly.
Jacket color is sometimes used to distinguish multi-mode cables from single-mode, with the former being orange and the latter yellow. A wide range of colors are commonly seen, however, so jacket color cannot always be relied upon to distinguish types of cable
read more “Applications of Multi-mode optical fiber”

Multi-mode fiber


Multi-mode optical fiber (multimode fiber or MM fiber or fibre) is a type of optical fiber mostly used for communication over shorter distances, such as within a building or on a campus. Typical multimode links have data rates of 10 Mbit/s to 10 Gbit/s over link lengths of up to 600 meters—more than sufficient for the majority of premises applications.
read more “Multi-mode fiber”

Phase shift upon total internal reflection

An additional less known aspect of total internal reflection is that the reflected light has an angle dependent phase shift between the reflected and incident light. Mathematically this means that the Fresnel reflection coefficient becomes a complex rather than a real number. This phase shift is polarization dependent and grows as the incidence angle deviates further from the critical angle toward grazing incidence.
The polarization dependent phase shift is long known and was used by Fresnel to design the Fresnel rhomb which allows to transform circular polarization to linear polarization and vice versa for a wide range of wavelengths (colors), in contrast to the quarter wave plate. The polarization dependent phase shift is also the reason why TE and TM guided modes have different dispersion relations.
read more “Phase shift upon total internal reflection”

Frustrated total internal reflection

Under "ordinary conditions" it is true that the creation of an evanescent wave does not affect the conservation of energy, i.e. the evanescent wave transmits zero net energy. However, if a third medium with a higher refractive index than the second medium is placed within less than several wavelengths distance from the interface between the first medium and the second medium, the evanescent wave will be different from the one under "ordinary conditions" and it will pass energy across the second into the third medium. (See evanescent wave coupling.)
A transparent, low refractive index material is sandwiched between two prisms of another material. This allows the beam to "tunnel" through from one prism to the next in a process very similar to quantum tunneling while at the same time altering the direction of the incoming ray.
read more “Frustrated total internal reflection”

Evanescent wave

An important side effect of total internal reflection is the propagation of an evanescent wave across the boundary surface. Essentially, even though the entire incident wave is reflected back into the originating medium, there is some penetration into the second medium at the boundary. This wave can lead to a phenomenon known as frustrated total internal reflection. Additionally, the evanescent wave appears to travel along the boundary between the two materials, leading to the Goos-Hänchen shift.
read more “Evanescent wave”